一个竖直放置的光滑圆环,半径为,、、、分别是其水平直径和竖直直径的端点.圆环与一个光滑斜轨相接,如图4所示.一个小球从与点高度相等的点从斜轨上无初速下滑.试求:
小题1:过点时,对轨道的压力多大?
小题2:小球能否过点,如能,在点对轨道压力多大?如不能,小球于何处离开圆环?
小题1:
小题2:
故小球经过圆环最低点时,对环的压力为.小球到达高度为的点开始脱离圆环,做斜上抛运动.
小题1:小球在运动的全过程中,始终只受重力和轨道的弹力.其中,是恒力,而是大小和方向都可以变化的变力.但是,不论小球是在斜轨上下滑还是在圆环内侧滑动,每时每刻所受弹力方向都与即时速度方向垂直.因此,小球在运动的全过程中弹力不做功,只有重力做功,小球机械能守恒.
从小球到达圆环最低点开始,小球就做竖直平面圆周运动.小球做圆周运动所需的向心力总是指向环心点,此向心力由小球的重力与弹力提供.
(1)因为小球从到机械能守恒,所以
①
②
③
解①②③得
小题2:小球如能沿圆环内壁滑动到点,表明小球在点仍在做圆周运动,则,可见,是恒量,随着的减小减小;当已经减小到零(表示小球刚能到达)点,但球与环顶已是接触而无挤压,处于“若即若离”状态)时,小球的速度是能过点的最小速度.如小球速度低于这个速度就不可能沿圆环到达点.这就表明小球如能到达点,其机械能至少应是,但是小球在点出发的机械能仅有<因此小球不可能到达点.
又由于,
即
因此,>0,小球从到点时仍有沿切线向上的速度,所以小球一定是在、之间的某点离开圆环的.设半径与竖直方向夹角,则由图可见,小球高度
④
根据机械能守恒定律,小球到达点的速度应符合:
⑤
小球从点开始脱离圆环,所以圆环对小球已无弹力,仅由重力沿半径方向的分力提供向心力,即
⑥
解④⑤⑥得
故小球经过圆环最低点时,对环的压力为.小球到达高度为的点开始脱离圆环,做斜上抛运动.