问题
解答题
已知
|
答案
(1)a•b=sinx•cosx+1×(-
)=sinxcosx-1 2
,∵a⊥b,∴a•b=01 2
即sinx•cosx-
=0,故sinx•cosx=1 2
.|a+b|=1 2
=(sinx+cosx)2+(1-
)21 2
=1+2sinxcosx+ 1 4
.3 2
(2)f(x)=a•(a-b)=a2-a•b=sin2x+12-sinx•cosx+1 2
=
+sin2x-sinx•cosx=3 2
+3 2
-1-cos2x 2 sin2x 2
=2-
(sin2x+cos2x)=2-1 2
sin(2x+2 2
).∵-1≤sin(2x+π 4
)≤1,π 4
∴2-
≤2-2 2
sin(2x+2 2
)≤2+π 4
.故函数f(x)=a•(a-b)的值域为[2-2 2
,2+2 2
].2 2