问题
填空题
已知函数f(x)=
|
答案
函数f(x)=
的定义域为R,只需分母不为0即可,3 3x-1 ax2+ax-3
所以a=0或 a≠0 △=a2-4a×(-3)<0
可得-12<a≤0,
故答案为:{a|-12<a≤0}.
已知函数f(x)=
|
函数f(x)=
的定义域为R,只需分母不为0即可,3 3x-1 ax2+ax-3
所以a=0或 a≠0 △=a2-4a×(-3)<0
可得-12<a≤0,
故答案为:{a|-12<a≤0}.