问题 解答题
已知a>0,函数f(x)=-2asin(2x+
π
6
)+2a+b,当x∈[0,
π
2
]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+
π
2
)且lgg(x)>0,求g(x)的单调区间.
答案

(1)∵x∈[0,

π
2
],

∴2x+

π
6
∈[
π
6
6
],

∴sin(2x+

π
6
)∈[-
1
2
,1],

∴-2asin(2x+

π
6
)∈[-2a,a],

∴f(x)∈[b,3a+b],又-5≤f(x)≤1.

b=-5
3a+b=1
,解得
a=2
b=-5

(2)f(x)=-4sin(2x+

π
6
)-1,

g(x)=f(x+

π
2
)=-4sin(2x+
6
)-1

=4sin(2x+

π
6
)-1,

又由lgg(x)>0,得g(x)>1,

∴4sin(2x+

π
6
)-1>1,

∴sin(2x+

π
6
)>
1
2

π
6
+2kπ<2x+
π
6
5
6
π+2kπ,k∈Z,

π
6
+2kπ<2x+
π
6
≤2kπ+
π
2
,得

kπ<x≤kπ+

π
6
,k∈Z.

π
2
+2kπ≤2x+
π
6
5
6
π+2kπ得

π
6
+kπ≤x<
π
3
+kπ,k∈Z.

∴函数g(x)的单调递增区间为(kπ,

π
6
+kπ](k∈Z),

单调递减区间为[

π
6
+kπ,
π
3
+kπ)(k∈Z)

单项选择题
单项选择题