问题
解答题
已知f(x)=1+log2x(1≤x≤4),记g(x)=2f2(x)+f(2x)-7
(1)求函数g(x)的定义域.
(2)求函数g(x)的零点.
答案
(1)∵f(x)=1+log2x(1≤x≤4),
∴g(x)=2f2(x)+f(2x)-7
=2(1+log2x)2+1+log22x-7
=2(log2x)2+5log2x-3.
∴函数g(x)的定义域是{x|1≤x≤4}.
(2)由g(x)=2(log2x)2+5log2x-3=0,
得log2x=
,或log2x=-3,1 2
∴x=
,或x=2
.1 8
∴函数g(x)的零点是x=
,或x=2
.1 8