问题
解答题
选修4-5:不等式选讲
已知函数f(x)=log2(|x-1|+|x-5|-a)
(Ⅰ)当a=5时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围.
答案
(Ⅰ)当a=5时,要使函数f(x)有意义,
即不等式|x-1|+|x-5|-5>0成立,------------------①
①当x≤1时,不等式①等价于-2x+1>0,解之得x<
;1 2
②当1<x≤5时,不等式①等价于-1>0,无实数解;
③当x>5时,不等式①等价于2x-11>0,解之得x>11 2
综上所述,函数f(x)的定义域为(-∞,
)∪(1 2
,+∞).11 2
(Ⅱ)∵函数f(x)的定义域为R,
∴不等式|x-1|+|x-5|-a>0恒成立,
∴只要a<(|x-1|+|x-5|)min即可,
又∵|x-1|+|x-5|≥|(x-1)+(x-5)|=4,(当且仅当1≤x≤5时取等号)
∴a<(|x-1|+|x-5|)min即a<4,可得实数a的取值范围是(-∞,4).