问题 解答题
设向量
a
=(1,cos2θ)
b
=(2,1)
c
=(4sinθ,1)
d
=(
1
2
sinθ,1)
,其中θ∈(0,
π
4
).
(1)求
a
b
-
c
d
的取值范围;
(2)若函数f(x)=|x-1|,比较f(
a
b
)与f(
c
d
)的大小.
答案

(1)∵

a
b
=2+cos2θ,
c
d
=2sin2θ+1=2-cos2θ,

a
b
-
c
d
=2cos2θ,

0<θ<

π
4
,∴0<2θ<
π
2
,∴0<2cos2θ<2,

a
b
-
c
d
的取值范围是(0,2).

(2)∵f(

a
b
)=|2+cos2θ-1|=|1+cos2θ|=2cos2θ,

f(

c
d
)=|2-|cos2θ-1=|1-cos2θ|=2cos2θ,

∴f(

a
b
)-f(
c
d
)=2(2cos2θ-2cos2θ)=2cos2θ,

0<θ<

π
4
,∴0<2θ<
π
2
,∴2cos2θ>0,

∴f(

a
b
)>f(
c
d

填空题
选择题