问题
解答题
设向量
(1)求
(2)若函数f(x)=|x-1|,比较f(
|
答案
(1)∵
•a
=2+cos2θ,b
•c
=2sin2θ+1=2-cos2θ,d
∴
•a
-b
•c
=2cos2θ,d
∵0<θ<
,∴0<2θ<π 4
,∴0<2cos2θ<2,π 2
∴
•a
-b
•c
的取值范围是(0,2).d
(2)∵f(
•a
)=|2+cos2θ-1|=|1+cos2θ|=2cos2θ,b
f(
•c
)=|2-|cos2θ-1=|1-cos2θ|=2cos2θ,d
∴f(
•a
)-f(b
•c
)=2(2cos2θ-2cos2θ)=2cos2θ,d
∵0<θ<
,∴0<2θ<π 4
,∴2cos2θ>0,π 2
∴f(
•a
)>f(b
•c
)d