问题 解答题
在△ABC中,内角A,B,C所对边长分别为a,b,c,
AB
AC
=8
,∠BAC=θ,a=4.
(1)求b•c的最大值及θ的取值范围;
(2)求函数f(θ)=
3
sin2θ+cos2θ+1
的最大值和最小值.
答案

解(1)bc•cosθ=8,b2+c2-2bccosθ=42即b2+c2=32…(2分)

又b2+c2≥2bc所以bc≤16,即bc的最大值为16 …(4分)

8
cosθ
≤16所以 cosθ≥
1
2
,又0<θ<π所以0<θ
π
3
…(6分)

(2)f(θ)=

3
sin2θ+cos2θ+1=2sin(2θ+
π
6
)+1
…(9分)

因0<θ

π
3
,所以
π
6
2θ+
π
6
6
1
2
≤sin(2θ+
π
6
)≤1
…(10分)

2θ+

π
6
=
6
θ=
π
3
时,f(θ)min=2×
1
2
+1=2
…(11分)

2θ+

π
6
=
π
2
θ=
π
6
时,f(θ)max=2×1+1=3…(12分)

单项选择题
单项选择题