问题
填空题
两条直线y=x+2a与y=2x+a的交点在圆(x-1)2+(y-1)2=26的内部,则实数a的取值范围是______.
答案
由题意可得:两条直线y=x+2a与y=2x+a的交点坐标为(a,3a),
因为交点在圆(x-1)2+(y-1)2=26的内部,
所以(a-1)2+(3a-1)2<26,解得-
<a<2.6 5
故答案为:-
<a<2.6 5
两条直线y=x+2a与y=2x+a的交点在圆(x-1)2+(y-1)2=26的内部,则实数a的取值范围是______.
由题意可得:两条直线y=x+2a与y=2x+a的交点坐标为(a,3a),
因为交点在圆(x-1)2+(y-1)2=26的内部,
所以(a-1)2+(3a-1)2<26,解得-
<a<2.6 5
故答案为:-
<a<2.6 5