问题
选择题
分式
|
答案
=6x2+12x+10 x2+2x+2
=6-6(x2+2x+2)-2 x2+2x+2
=6-2 x2+2x+2 2 (x+1)2+1
∵(x+1)2≥0,
∴(x+1)2+1≥1,
即
≤1,-1 (x+1)2+1
≥-2,6-2 (x+1)2+1
≥6-2=4,2 (x+1)2+1
∴
可取的最小值为4.6x2+12x+10 x2+2x+2
故选A.
分式
|
=6x2+12x+10 x2+2x+2
=6-6(x2+2x+2)-2 x2+2x+2
=6-2 x2+2x+2 2 (x+1)2+1
∵(x+1)2≥0,
∴(x+1)2+1≥1,
即
≤1,-1 (x+1)2+1
≥-2,6-2 (x+1)2+1
≥6-2=4,2 (x+1)2+1
∴
可取的最小值为4.6x2+12x+10 x2+2x+2
故选A.