问题 解答题
已知双曲线C:
x2
4
-y2=1
,P为C上的任意点.
(1)求双曲线C的渐近线方程;
(2)设点A的坐标为(3,0),求|PA|的最小值.
答案

(1)双曲线C:

x2
4
-y2=1的渐近线方程
x2
4
-y2=0
,即x-2y=0和x+2y=0.

(2)设P的坐标为(x,y),则

|PA|2=(x-3)2+y2=(x-3)2+

x2
4
-1=
5
4
(x-
12
5
2+
4
5

∵|x|≥2,∴当x=

12
5
时,|PA|2的最小值为
4
5

即|PA|的最小值为

2
5
5

单项选择题
单项选择题