问题 问答题

如图所示,M、N为正对着竖直放置的金属板,其中N板的正中央有一个小孔,M、N板间的电压 U1=1.0×103V.P、Q为正对着水平放置的金属板,板长L=10cm,两板间的距离 d=12cm,两板间的电压 U2=2.4×103V.P、Q板的右侧存在方向垂直纸面向里的匀强磁场区域,其中虚线为磁场的左右边界,边界之间的距离l=60cm,竖直方向磁场足够宽.一个比荷

q
m
=5.0×104C/kg的带正电粒子,从静止开始经M、N板间的电压U1加速后,沿P、Q板间的中心线进入P、Q间,并最终进入磁场区域.整个装置处于真空中,不计重力影响.

(1)求粒子进入P、Q板间时速度 υ 的大小;

(2)若粒子进入磁场后,恰好没有从磁场的右边界射出,求匀强磁场的磁感应强度B的大小.

答案

 (1)粒子在M、N间运动时,根据动能定理得qU1=

1
2
mυ2

带入数据得:v=

2qU1
m
=104m/s

粒子进入P、Q板间时速度为104m/s;

(2)设粒子在P、Q板间运动的时间为t.

粒子的加速度     a=

qU2
md

粒子在竖直方向的速度 υy=at

粒子的水平位移   L=υt

若粒子穿出P、Q板间时速度偏向角为θ,则tanθ=

υy
υ
=
U2L
2dU1
=1

所以θ=45°.

粒子穿出P、Q板间时的速度υ1=

2
υ

粒子在匀强磁场中做匀速圆周运动时,轨迹如上图所示,粒子进入磁场时速度的大小为υ1,速度的方向与水平方向的夹角也为θ,所以rsinθ+r=l

因为洛伦兹力提供向心力,则qυ1B=m

υ12
r

解得          B=0.8 T

匀强磁场的磁场强度为0.8T

单项选择题
单项选择题