问题 问答题

如图所示,两只质量均为120kg的小船静止在水面上,相距10m并用细绳连接.一个质量为60kg的人在船头以恒力F拉绳,不计水的阻力,求:

(1)当两船相遇时,两船各行进了多少米?

(2)当两船相遇但不相碰的瞬间,为了避免碰撞,人从甲船跳向乙船需要对地的最小水平速度为6m/s,计算原来人拉绳的恒力F.

答案

(1)由动量守恒定律,得(m+m)v-mv=0,

得到(m+m

s
t
=m
s
t

已知s+s=10m,

解得s=4m,s=6m,

(b)为了避免碰撞,人跳到乙船后系统至少要静止.

设人在起跳前瞬间甲船和人的速度为v1,乙船速度v2

对甲船和人组成的系统由动量守恒得,(m+m)v1=mv,解得:v1=2m/s,

对甲,由动能定理得,Fs=

1
2
(m+m)v12,解得F=90N.

答:(1)当两船相遇时,甲船行进4m,乙船行进6m;

(2)原来人拉绳的恒力F=90N.

选择题
选择题