问题 问答题

如图所示,地面和半圆轨道面均光滑.质量M=1kg、长L=4m的小车放在地面上,其右端与墙壁的距离为S=3m,小车上表面与半圆轨道最低点P的切线相平.现有一质量m=2kg的滑块(不计大小)以v0=6m/s的初速度滑上小车左端,带动小车向右运动.小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2

(1)求小车与墙壁碰撞时的速度;

(2)要滑块能沿圆轨道运动而不脱离圆轨道,求半圆轨道的半径R的取值.

答案

(1)设滑块与小车的共同速度为v1,滑块与小车相对运动过程中动量守恒,有

  mv0=(m+M)v1 

代入数据解得

  v1=4m/s 

设滑块与小车的相对位移为 L1,由系统能量守恒定律,有

  μmgL1=

1
2
m
v20
-
1
2
(m+M)
v21

代入数据解得   L1=3m 

设与滑块相对静止时小车的位移为S1,根据动能定理,有

  μmgS1=

1
2
M
v21
-0

代入数据解得S1=2m 

因L1<L,S1<S,说明小车与墙壁碰撞前滑块与小车已具有共同速度,且共速时小车与墙壁还未发生碰撞,故小车与碰壁碰撞时的速度即v1=4m/s.

(2)滑块将在小车上继续向右做初速度为v1=4m/s,位移为L2=L-L1=1m的匀减速运动,然后滑上圆轨道的最低点P.

若滑块恰能滑过圆的最高点,设滑至最高点的速度为v,临界条件为

  mg=m

v 2
R

根据动能定理,有

-μmgL2-mg•2R=

1
2
mv 2-
1
2
m
v21

①②联立并代入数据解得R=0.24m 

若滑块恰好滑至

1
4
圆弧到达T点时就停止,则滑块也能沿圆轨道运动而不脱离圆轨道.

根据动能定理,有

-μmgL2-mg•R=0-

1
2
m
v21

代入数据解得R=0.6m 

综上所述,滑块能沿圆轨道运动而不脱离圆轨道,半圆轨道的半径必须满足

R≤0.24m或R≥0.6m 

答:

(1)小车与墙壁碰撞时的速度是4m/s;

(2)要滑块能沿圆轨道运动而不脱离圆轨道,半圆轨道的半径R的取值为R≤0.24m或R≥0.6m.

名词解释
单项选择题