问题
解答题
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.
(1)求直线PQ与圆C的方程;
(2)若直线l∥PQ,且l与圆C交于点A、B,∠AOB=90°,求直线l的方程.
答案
解:(1)直线PQ的方程为y-3=×(x+1),即x+y-2=0,
C在PQ的中垂线y-=1×(x-),即y=x-1上,
设C(n,n-1),
则r2=|CQ|2=(n+1)2+(n-4)2,
由题意,有r2=(2)2+|n|2,
∴n2+12=2n2-6n+17,
∴n=1或5,r2=13或37(舍去),
∴圆C为(x-1)2+y2=13.
(2)设直线l的方程为x+y+m=0,
由,得2x2+(2m-2)x+m2-12=0,
设A(x1,y1),B(x2,y2),则x1+x2=1-m,x1x2=,
∵∠AOB=90°,
∴x1x2+y1y2=0,
∴x1x2+(x1+m)(x2+m)=0,
∴m2+m-12=0,∴m=3或-4(均满足Δ>0),
∴l为x+y+3=0或x+y-4=0.