问题 填空题
数列{an}的通项公式an=cos
2n
,n∈N*,当n=______时,an有最小值.
答案

∵数列{an}的通项公式an=cos

2n
,n∈N*

a1=cos

2
=cos(4π-
π
2
)=cos(-
π
2
)=cos
π
2
=0,

a2=cos

4
=cos(2π-
π
4
)=cos(-
π
4
)=cos
π
4
=
2
2

a3=cos

6
=cos(π+
π
6
)=-cos
π
6
=-
3
2

a4=cos

8
=cos(π-
π
8
)
=-cos
π
8
=-
1+cos
π
4
2
=-
2+
2
2

a5=cos

10
=cos(π-
10
)
=-cos
10
>-cos
π
8
=a4

a6=cos

12
=cos(π-
12
)=-cos
12
>-cos
10
=a5

a7=cos

π
2
=0.

当n≥8,n∈N*时,

2n
是锐角,an=cos
2n
>0,

∴当n=4时,an有最小值.

故答案为:4.

选择题
单项选择题