问题
填空题
数列{an}的通项公式an=cos
|
答案
∵数列{an}的通项公式an=cos
,n∈N*,7π 2n
∴a1=cos
=cos(4π-7π 2
)=cos(-π 2
)=cosπ 2
=0,π 2
a2=cos
=cos(2π-7π 4
)=cos(-π 4
)=cosπ 4
=π 4
,2 2
a3=cos
=cos(π+7π 6
)=-cosπ 6
=-π 6
,3 2
a4=cos
=cos(π-7π 8
)=-cosπ 8
=-π 8
=-1+cos π 4 2
.2+ 2 2
a5=cos
=cos(π-7π 10
)=-cos3π 10
>-cos3π 10
=a4.π 8
a6=cos
=cos(π-7π 12
)=-cos5π 12
>-cos5π 12
=a5,3π 10
a7=cos
=0.π 2
当n≥8,n∈N*时,
是锐角,an=cos7π 2n
>0,7π 2n
∴当n=4时,an有最小值.
故答案为:4.