问题
解答题
自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在的直线与圆x2+y2-4x-4y+7=0相切,求光线L所在的直线方程。
答案
解:已知圆的标准方程是(x-2)2+(y-2)2=1,
它关于x轴的对称圆的方程是(x-2)2+(y+2)2=1。
设光线L所在直线方程是:y-3=k(x+3),
由题设知,对称圆的圆心C′(2,-2)到这条直线的距离等于1,即,
整理得,,
解得:或
,
故所求的直线方程是或
,
即3x+4y-3=0或4x+3y+3=0。