问题 解答题
已知函数y=f(x)是偶函数,当x>0时,有f(x)=x+
4
x
,且当x∈[-3,-1],f(x)的值域是[n,m],则m-n的值是?
答案

∵当x>0时,f(x)=x+

4
x

∴x<0时,-x>0,f(-x)=-x-

4
x

∵函数y=f(x)是偶函数,f(-x)=f(x),

∴x<0时,f(x)=-x-

4
x

∵f(x)=x+

4
x
在[1,2]单调递减,在[2,3]上单调递增

根据偶函数的图象关于y轴对称可知,f(x)=-x-

4
x
在[-3,-2]单调递减,在[-2,-1]单调递增,

∴f(x)min=f(-2)=4=n,又f(-3)=

13
3
,f(-1)=5>f(-3),

∴f(x)max=f(-1)=5=m,

∴m-n=1.

单项选择题
单项选择题