问题 解答题
(1)比较a2x2+1ax2+2的大小.
(2)a∈R,f(x)=a-
2
2x+1
 若f(x)为奇函数,求f(x)的值域并判断单调性.
答案

(1)由题意知,这两个数都是正数,

a2x2+1
ax2+2
=ax2-1

当 a>1时,若x=±1,ax2-1=0,a2x2+1=ax2+2

            若x>1或x<-1,ax2-1>1,a2x2+1ax2+2

            若1>x>-1,ax2-1<1,a2x2+1ax2+2

当 1>a>0时,若x=±1,ax2-1=0,a2x2+1=ax2+2

            若x>1或x<-1,1>ax2-1>0,a2x2+1ax2+2

            若1>x>-1,ax2-1>1,a2x2+1ax2+2

(2)∵f(x)为奇函数,∴f(-x)=-f(x),a-

2
2-x+1
=a+
2
2x+1

解得 a=1,故f(x)=1+

-2
2x+1
  在其定义域内是增函数,

当x趋向-∞时,2x+1趋向1,f(x)趋向-1,当x趋向+∞时,2x+1趋向+∞,f(x)趋向1,

∴f(x)的值域(-1,1).

单项选择题
判断题