问题
解答题
(1)比较a2x2+1与ax2+2的大小. (2)a∈R,f(x)=a-
|
答案
(1)由题意知,这两个数都是正数,
=ax2-1,a2x2+1 ax2+2
当 a>1时,若x=±1,ax2-1=0,a2x2+1=ax2+2;
若x>1或x<-1,ax2-1>1,a2x2+1>ax2+2;
若1>x>-1,ax2-1<1,a2x2+1<ax2+2;
当 1>a>0时,若x=±1,ax2-1=0,a2x2+1=ax2+2;
若x>1或x<-1,1>ax2-1>0,a2x2+1<ax2+2;
若1>x>-1,ax2-1>1,a2x2+1>ax2+2;
(2)∵f(x)为奇函数,∴f(-x)=-f(x),a-
=a+2 2-x+1
,2 2x+1
解得 a=1,故f(x)=1+
在其定义域内是增函数,-2 2x+1
当x趋向-∞时,2x+1趋向1,f(x)趋向-1,当x趋向+∞时,2x+1趋向+∞,f(x)趋向1,
∴f(x)的值域(-1,1).