问题 计算题

(16分)如图所示,一小球从斜轨道的某高度处自由滑下,然后沿竖直圆轨道的内侧运动。已知圆轨道的半径为R,重力加速度为g.

(1)要使小球能通过圆轨道的最高点,小球在圆轨道最高点时的速度至少为多大?

(2)如果忽略摩擦阻力,要使小球能通过圆轨道的最高点,小球的初位置必须比圆轨道最低点高出多少?

答案

(1)

(2)h=5R/2

(1)在圆轨道的最高点,由牛顿第二定律有

mg=m            得  v=

要使小球能通过圆轨道的最高点,小球在轨道最高点时的速度至少为

(2)设小球的初位置比圆轨道最低点高出h时,小球刚好能通过圆轨道最高点,由机械能守恒定律有mg(h-2R)= mv2解得   h=5R/2

选择题
问答题