问题
解答题
已知函数f(x)=-x2+2bx-b
(1)当b=2时,求函数y=f(x) 在[1,4]上的最值;
(2)若函数y=f(x) 在[1,4]上仅有一个零点,求b的取值范围;
(3)是否存在实数b,使得函数y=f(x) 在[1,+∞)上的最大值是2,若存在,求出b的值;若不存在,请说明理由.
答案
f(x)=-x2+2bx-b=-(x-b)2-b+b2,的图象开口向下,对称轴为x=b的抛物线…(1分)
(1)当b=2时,f(x)=-x2+4x-2=-(x-2)2+2的图象开口向下,对称轴为x=2…(2分)
∴f(x)max=f(2)=2,
f(x)min=f(4)=-2…(4分)
(2)∵函数y=f(x) 在[1,4]上仅有一个零点
∴f(1)•f(4)≤0…(6分)(须验证端点是否成立与△=0的情况)
即(-1+b)(-16+7b)≤0
∴1≤b≤16 7
∴b的取值范围是[1,
]…(7分)16 7
(3)当b<1时,y=f(x) 在[1,+∞)上是减函数,
f(x)max=f(1)=b-1=2
解得b=3,不合要求…(9分)
当b≥1时,f(x)max=f(b)=b2-b=2即b2-b-2=0
解得b=2或b=-1(不合,舍去),
∴b=2…(11分)
综上所述,当b=2时,使得函数y=f(x) 在[1,+∞)上的最大值是2.…(12分)