问题
解答题
求函数y=
|
答案
依题意,令lg
≥0,x x2-7x+12
即lg
≥lg1.x x2-7x+12
于是有
≥1⇒x x2-7x+12
-1≥0⇒x x2-7x+12
≤0⇒x2-8x-12 x2-7x+12
≤0⇒(x-2)(x-6) (x-3)(x-4)
⇒x∈[2,3)∪(4,6].(x-2)(x-6)(x-3)(x-4)≤0 (x-3)(x-4)≠0
求函数y=
|
依题意,令lg
≥0,x x2-7x+12
即lg
≥lg1.x x2-7x+12
于是有
≥1⇒x x2-7x+12
-1≥0⇒x x2-7x+12
≤0⇒x2-8x-12 x2-7x+12
≤0⇒(x-2)(x-6) (x-3)(x-4)
⇒x∈[2,3)∪(4,6].(x-2)(x-6)(x-3)(x-4)≤0 (x-3)(x-4)≠0