问题 解答题
解方程:
(1)x2-2x-1=0.
(2)x2+2x-1=0.
(3)x2+x-1=0.
(4)x2+3x-1=0.
(5)x(x+2)=1.
(6)5(x-3)2=125.
(7)x2+2=2
3
x.
(8)3(x2-5)=4x.
(9)3x2+(x-2)=0.
(10)(2x-1)(x+3)=4.
(11)x2-3x-4=0.
(12)x2-3x-18=0.
答案

(1)x2-2x=1,

x2-2x+1=2,

(x-1)2=2,

x-1=±

2

∴x1=1+

2
,x2=1-
2

(2)x2+2x=1,

x2+2x+1=2,

(x+1)2=2,

x+1=±

2

∴x1=-1+

2
,x2=-1-
2

(3)△=1-4×(-1)=5,

x=

-1±
5
2

∴x1=

-1+
5
2
,x2=
-1-
5
2

(4)△=9-4×(-1)=13,

x=

-3±
13
2

∴x1=

-3+
13
2
,x2=
-3-
13
2

(5)x2+2x=1,

x2+2x+1=2,

(x+1)2=2,

x+1=±

2

∴x1=-1+

2
,x2=-1-
2

(6)(x-3)2=25,

x-3=±5,

∴x1=8,x2=-2.

(7)x2-2

3
x+2=0,

△=12-4×2=4,

x=

2
3
±2
2
=
3
±1,

∴x1=

3
+1,x2=
3
-1.

(8)3(x2-5)=4x,

3x2-4x-15=0,

(3x+5)(x-3)=0,

∴x1=-

5
3
,x2=3.

(9)3x2+(x-2)=0,

3x2+x-2=0

(3x-2)(x+1)=0,

∴x1=

2
3
,x2=-1.

(10)(2x-1)(x+3)=4,

整理为2x2+5x-7=0,

(2x+7)(x-1)=0,

∴x1=-

7
2
,x2=-1.

(11)x2-3x-4=0,

(x-4)(x+1)=0,

∴x1=4,x2=-1.

(12)x2-3x-18=0,

(x+3)(x-6)=0,

∴x1=-3,x2=6.

单项选择题
单项选择题