问题 计算题

如图所示,有两块大小不同的圆形薄板(厚度不计),质量M=,半径分别为,两板之间用一根长的轻绳将薄板中心相连结(未画出).开始时,两板水平放置并叠合在一起,静止于距离固定支架C高度处. 然后自由下落到C上,支架上有一半径为 ()的圆孔,圆孔与两薄板中心均在圆板中心轴线上. 薄板M与支架发生没有机械能损失的碰撞(碰撞时间极短). 碰撞后,两板即分离,直到轻绳绷紧.在轻绳绷紧的瞬间,两板立即具有共同速度.不计空气阻力,,求:

(1)从两板分离到轻绳绷紧经历的时间

(2)轻绳绷紧过程中系统损失的机械能

答案

(1)0.1s(2)4J

题目分析:(1) 薄板M与支架碰撞前:根据动能定理知:(M+m)gh=(M+m)V02

V0=2m/s   

薄板M碰撞支架后以V0返回作竖直上抛运动,m继续下落做匀加速运动.经时间t,薄板M上升高度为h1

m下落高度为h2. 则:

h1=V0t-gt2;   h2=V0t+gt2 ;  h1+h2=2V0t=0.4m

故:

(2)设绳绷紧前M速度为V1,m的速度为V2,有V1=V0-gt=2-10×0.1=1m/s

V2=V0+gt=2+10×0.1=3m/s

绳绷紧时,取向下为正方向,根据动量守恒, mV2-MV1=(M+m)V 得

填空题
阅读理解与欣赏