问题 解答题
(1)求函数y=
log0.5(4x3-3x)
+(x-1)0的定义域
(2)设a>0且a≠1,解关于x的不等式a2x2-3x+2a2x2+2x-3
答案

(1)根据题意得

0<4x2-3x<1
x-1≠0
,得:x∈(-
1
4
,0)∪(
3
4
,1)

故函数y=

log0.5(4x3-3x)
+(x-1)0的定义域为(-
1
4
,0)∪(
3
4
,1)

(2)当a>1时,由关于x的不等式a2x2-3x+2a2x2+2x-3.可得 2x2-3x+2>2x2+2x-3,解得x<1.

当0<a<1时,由关于x的不等式a2x2-3x+2a2x2+2x-3.可得 2x2-3x+2<2x2+2x-3,解得x>1.

综上,当a>1时,不等式的解集为{x|x<1};当0<a<1时,不等式的解集为{x|x>1}.

填空题
单项选择题