问题 解答题
某工程机械厂根据市场需求,计划生产A、B两种型号的大型运输机械共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号的大型运输机械,所生产的此两型大型运输机械可全部售出,此两型大型运输机械生产成本和售价如下表:
型号
A
B
成本(万元/台)
200
240
售价(万元/台)
250
300
小题1:该厂对这两型大型运输机械有哪几种生产方案?
小题2:该厂如何生产能获得最大利润?
小题3:根据市场调查,每台B型大型运输机械的售价不会改变,每台A型大型运输机械的售价将会提高m万元(m>0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)  
答案

小题1:见解析

小题1:见解析

小题1:见解析

小题1:解:设生产A型x台,则B型(100-x)台,由题意得

22400≤200x+240(100-x)≤22500,

解得37.5≤x≤40.

∵x取非负整数,∴x为38,39,40.

∴有三种生产方案:A型38台,B型62台;

A型39台,B型61台;

A型40台,B型60台

小题1:设获得利润W(万元),由题意得W=50x+60(100-x)=6000-10x

∴当x=38时,W最大=5620(万元),即生产A型38台,B型62台时,获得最大利润.

小题1:由题意得W=(50+m)x+60(100-x)=6000+(m-10)x

∴当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;

当m=10时,m-10=0,则三种生产方案获得利润相等;

∴当m>10,则x=40时,W最大,

即生产A型40台,B型60台

判断题
单项选择题 A1/A2型题