问题 问答题

质量为4000kg的汽车,其发动机的额定功率为80kW,它在平直公路上行驶时所受阻力为其车重的0.1倍,该车从静止开始以2m/s2的加速度做匀加速运动,g取10m/s2,求:

(1)该汽车在路面上行驶的最大速度是多少?

(2)这种匀加速运动能的维持时间?

(3)当汽车的加速度变为1.0m/s2时,汽车速度为多大?

答案

(1)当汽车在路面上行驶达到最大速度时a=0,故满足牵引力F=f.

由P=FV得:

vm=

P
F
=
P
f
=
80×103
0.1×4000×10
m/s=20m/s

(2)汽车匀加速时,有牛顿第二定律得:

F-f=ma

即牵引力:F=ma+f=4000×2+4000×10×0.1=12000N,

根据P=Fv得功率刚刚达到额定功率时得速度为:

v=

P
F
=
80×103
12000
m/s=
20
3
m/s

由v=at得匀加速运动得最长时间为:

t=

v
a
=
20
3
2
s=
10
3
s≈3.33s

(3)加速度为1m/s2时,由牛顿第二定律得:

F′-f=ma′

牵引力为:

F′=ma′+f=4000×1+4000×10×0.1=8000N

根据P=Fv得:

此时v′=

P
F′
=
80000
8000
m/s=10m/s

答:(1)该汽车在路面上行驶的最大速度是20m/s;

(2)这种匀加速运动能的维持时间为3.33S;

(3)当汽车的加速度变为1.0m/s2时,汽车速度为10m/s.

填空题
多项选择题