问题 选择题
若函数y=
mx-1
mx2+4mx+3
的定义域为R,则实数m的取值范围是(  )
A.(0,
3
4
B.(-∞,0)∪(0,+∞)C.(-∞,0]∪[
3
4
,+∞)
D.[0,
3
4
答案

依题意,函数的定义域为R,

即mx2+4mx+3≠0恒成立.

①当m=0时,得3≠0,故m=0适合,可排除A、B.

②当m≠0时,16m2-12m<0,得0<m<

3
4

综上可知0≤m<

3
4
,排除C.

故选D

填空题
多项选择题