问题
填空题
设f(x)=sinx+cosx,若
|
答案
∵f(x)=sinx+cosx=
sin(x+2
),若π 4
<x1<x2<π 4
,则π 2
<x1+π 2
<x2+π 4
<π 4
,3π 4
∴sin(x1+
)>sin(x2+π 4
),∴f(x1)>f(x2),π 4
故答案为:f(x1)>f(x2).
设f(x)=sinx+cosx,若
|
∵f(x)=sinx+cosx=
sin(x+2
),若π 4
<x1<x2<π 4
,则π 2
<x1+π 2
<x2+π 4
<π 4
,3π 4
∴sin(x1+
)>sin(x2+π 4
),∴f(x1)>f(x2),π 4
故答案为:f(x1)>f(x2).