问题
解答题
在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm.
(1)求这个三角形的斜边AB的长和斜边上的高CD的长;
(2)求斜边被分成的两部分AD和BD的长.
答案
(1)∵△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm,
∴AB2=AC2+BC2=2.12+2.82=12.25,
∴AB=3.5cm.
∵S△ABC=
AC•BC=1 2
AB•CD,1 2
∴AC•BC=AB•CD,
∴CD=
=AC•BC AB
=1.68(cm).2.1×2.8 3.5
(2)在Rt△ACD中,由勾股定理得:
AD2+CD2=AC2,
∴AD2=AC2-CD2=2.12-1.682
=(2.1+1.68)(2.1-1.68)
=3.78×0.42
=2×1.89×2×0.21
=22×9×0.21×0.21
∴AD=2×3×0.21=1.26(cm).
∴BD=AB-AD=3.5-1.26=2.24(cm).