问题 解答题

m为何值时,关于x的一元二次方程(m+1)x2-(2m-3)x=-m-1:

(1)有两个不相等的实数根;

(2)有两个相等的实数根;

(3)没有实数根.

答案

,方程化为(m+1)x2-(2m-3)x+m+1=0

b2-4ac=[-(2m-3)]2-4×(m+1)2=-20m+5

∵m+1≠0,∴m≠-1

(1)当-20m+5>0时,m<

1
4

∴当m<

1
4
且m≠-1时原方程有两个不相等的实数根;

(2)当-20m+5=0时,m=

1
4

∴当m=

1
4
时有两个相等的实数根;

(3)当-20m+5<0时,m>

1
4

∴当m>

1
4
时没有实数根.

答:当m<

1
4
且m≠-1时原方程有两个不相等的实数根;当m=
1
4
时有两个相等的实数根;当m>
1
4
时没有实数根.

单项选择题
单项选择题