问题
解答题
设函数f(x)=cos(2x-
(Ⅰ)求f(x)在(0,
(Ⅱ)记△ABC的内角A,B,C的对边长分别为a,b,c,若f(A)=1,a=
|
答案
(I)f(x)=cos(2x-
)-cos2x=cos2xcosπ 3
+sin2xsinπ 3
-cos2x π 3
=
sin2x-3 2
cos2x=sin(2x-1 2
).∵x∈(0,π 6
),∴2x-π 2
∈(-π 6
,π 6
),5π 6
∴sin(2x-
)∈(-π 6
,1],即f(x)在(0,1 2
)的值域为(-π 2
,1].1 2
(II)由(I)可知,f(A)=sin(2A-
),∴sin(2A-π 6
)=1.π 6
∵0<A<π,∴-
<2A-π 6
<π 6
,∴2A-11π 6
=π 6
,A=π 2
.π 3
∵a2=b2+c2-2bccosA,把a=
,b=3代入,得到c2-3c+2=0,∴c=1或c=2.7