问题
解答题
求经过直线L1:3x+4y-5=0与直线L2:2x-3y+8=0的交点M,且满足下列条件的直线方程(求两已知直线的交点M(-1,2)
(1)与直线-2x+y+5=0平行;
(2)与直线4x+3y-6=0垂直.
答案
由
,解得3x+4y=5 2x-3y=-8
.x=-1 y=2
所以交点M(-1,2);
(1)由条件所求直线与-2x+y+5=0平行,所以k=2,由y-2=2(x+1),
所以所求的直线方程为2x-y+4=0;
(2)由条件所求直线与4x+3y-6=0垂直,所以k=
,由y-2=3 4
(x+1),3 4
所以所求直线方程为3x-4y+11=0.