问题
填空题
直线x+(2+m)y+1=0与(m+2)x-my-2=0平行,则m=______.
答案
当 m=-2 时,直线x+(2+m)y+1=0 即 x=-1,(m+2)x-my-2=0 即 y=1,
直线x+(2+m)y+1=0与(m+2)x-my-2=0不平行.
当 m=0 时 直线x+(2+m)y+1=0 即 x+2y+1=0,(m+2)x-my-2=0 即 x=1,
直线x+(2+m)y+1=0与(m+2)x-my-2=0不平行.
故直线x+(2+m)y+1=0与(m+2)x-my-2=0的斜率都存在,∴
=-1 2+m
,m+2 m
解得 m=-1,
故答案为-1.