问题
计算题
(选修3-4选做题)
如图所示,为某种透明介质的截面图,△AOC为等腰直角三角形,BC为半径R=12cm的四分之一圆弧,AB与水平屏幕MN垂直并接触于A 点.由红光和紫光两种单色光组成的复色光射向圆心O,在AB分界面上的入射角i=45°,结果在水平屏幕MN上出现两个亮斑。已知该介质对红光和紫光的折射率分别为,
。
(1)判断在AM和AN两处产生亮斑的颜色;
(2)求两个亮斑间的距离。
答案
解:(1)设红光和紫光的临界角分别为C1、C2
,
同理<
所以紫光在AB成发生全反射,而红光在AB面一部分折射,一部分反射
且由几何关系可知,反射光线与AC 垂直,所以在AM处产生的亮斑P1为红色,在AN 处产生的亮斑P2为红色与紫色的混合色
(2)画出如图光路图
设折射角为r,两个光斑分别为P1、P2,根据折射定律
求得
由几何知识可得:
解得cm
由几何知识可得为等腰直角三角形,解得AP2=12cm
所以cm