问题 解答题
集合C={f(x)|f(x)是在其定义域上的单调增函数或单调减函数},集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在a,b上的值域是[ka,kb],k为常数}.
(1)当k=
1
2
时,判断函数f(x)=
x
是否属于集合C∩D?并说明理由.若是,则求出区间[a,b];
(2)当k=
1
2
0时,若函数f(x)=
x
+t∈C∩D,求实数t的取值范围;
(3)当k=1时,是否存在实数m,当a+b≤2时,使函数f(x)=x2-2x+m∈D,若存在,求出m的范围,若不存在,说明理由.
答案

(1)y=

x
的定义域是[0,+∞),

∵y=

x
在[0,+∞)上是单调增函数,

设y=

x
在[a,b]的值域是[
a
b
],

a
=
1
2
a
b
=
1
2
b
,解得
a=0
b=4

故函数y=

x
属于集合C∩D,且这个区间是[0,4].

(2)设g(x)=

x
+t,则g(x)是定义域[0,+∞)上的增函数,

∵g(x)∈C∩D,∴存在区间[a,b]⊂[0,+∞),满足g(a)=

1
2
a,g(b)=
1
2
b

∴方程g(x)=

1
2
x在[0,+∞)内有两个不等实根,

方程

x
+t=
1
2
x
在[0,+∞)内有两个不等实根,

x
=m,则其化为m+t=
1
2
m2

即m2-2m-2t=0有两个非负的不等实根,

△=4+8t>0
x1+x2=2>0
x1x2=-2t≥0
,解得-
1
2
<t≤0

(3)f(x)=x2-2x+m∈D,且k=1,

∴当a<b≤1时,f(x)在[a,b]上单调递减,

b=m-2a+a2
a=m-2b+b2

两式相减,得a+b=1,

1-a=m-2a+a2
1-b=m-2b+b2

0=m-1-a+a2
0=m-1-b+b2

∴方程0=m-1-x+x2在x≤1上有两个不同的解,

解得m∈[1,

5
4
).

材料题

【近代社会的民主思想与实践】

阅读下列材料,回答问题:     

材料一  国王是法律的创造者,而非法律创造国王……假如臣民认为国王滥用权力,他们只能祈求上帝开导国 王,把他们引导到正确的道路上去……正像争论上帝能做什么是无神论和渎神一样,作为一个臣民去争论国王能做什么,或者国王不能做这做那,也是僭越和高度的侮辱。                                                                          ──詹姆士·斯图亚特《神权》(1603年)

材料二  人们参加社会的理由在于保护他们的财产,他们选择一个立法机关赋予其权力的目的,是希望由此可以制定法律,树立准则,以保卫一切社会成员的财产……当立法者们图谋破坏人民财产或贬低他们的社会地位,使其处于专断权力下的奴役状态时,立法者就使自己和人民处于战争状态。人民因此应就无须再予以服从,而只能寻求上帝给予人们抵抗强暴的共同庇护。──约翰·洛克《政府论》(1688年)

(1)请分析以上两则材料思想倾向的不同。

                                                                                                                                                                                                                     

(2)根据史实说明这两种思想在其所处时代的作用。

                                                                                                                                                                                                                     

名词解释