设0<α<π,且函数f(x)=sin(x+α)+cos(x-α)是偶函数,则α的值为______.
∵f(-x)=sin(-x+α)+cos(-x-α)=sinαcosx-cosαsinx+cosxcosα-sinxsinα=f(x)=sinxcosα+cosxsinα+cosxcosα+sinxsinα
∴-cosαsinx-sinxsinα=sinxcosα+sinxsinα
∴-2sinxcosα=2sinxsinα
∴sinx(sinα+cosα)=0
∴α=(2k+1)π+
,k∈Z因为0<α<π,所以α=π 4 3π 4
故答案为:
.3π 4