问题
解答题
直线l过点M(1,1),与椭圆
|
答案
易知直线l存在斜率,
设P(x1,y1),Q(x2,y2),PQ的中点为(
,y0),则x1+x2=1,y1+y2=2y0,1 2
把P、Q坐标代入椭圆方程,得
+x12 16
=1①,y12 4
+x22 16
=1②,y22 4
①-②得,
+x12-x22 16
=0,即y12-y22 4
=-y1-y2 x1-x2
=-x1+x2 4(y1+y2)
,1 8y0
又
=y1-y2 x1-x2
,y0-1
-11 2
所以
=-y0-1
-11 2
,解得y0=1 8y0
+1 2
,y0=5 4
-1 2
,5 4
则直线斜率k=-
=1±1 8y0
,5 2
所以直线l方程为:y-1=(1+
)(x-1)或y-1=(1-5 2
)(x-1),即y=(1+5 2
)(x-1)+1或y=(1-5 2
)(x-1)+1.5 2