问题 选择题
下列四个函数:①y=3-x;②y=
1
x2+1
;③y=x2+2x-10;④y=
-x(x≤0)
-
1
x
(x>0)
,其中值域为R的函数有(  )
A.1个B.2个C.3个D.4个
答案

根据一次函数的值域为R,y=3-x为一次函数,故①满足条件;

根据x2+1≥1,可得0<

1
x2+1
≤1,即函数y=
1
x2+1
的值域为(0,1],故②不满足条件;

二次函数y=x2+2x-10的最小值为-11,无最大值,故函数y=x2+2x-10的值域为[-11,+∞),故③不满足条件;

当x≤0时,y=-x≥0,当x>0时,y=-

1
x
<0,故函数y=
-x(x≤0)
-
1
x
(x>0)
的值域为R,故④满足条件;

故选B

单项选择题
多项选择题