问题
填空题
已知关于x的方程(a2-1)x2-(a+1)x+1=0的两个实数根互为倒数,则a的值为______.
答案
∵方程(a2-1)x2-(a+1)x+1=0有两个实数根,
∴a≠±1,
设方程(a2-1)x2-(a+1)x+1=0的两个实数根分别为α、β,
又∵方程(a2-1)x2-(a+1)x+1=0的两个实数根互为倒数,
∴αβ=
=1,1 a2-1
解得a=±
,2
∵△=[-(a+1)]2-4×(a2-1)
=(1-
)2-4×12
=-2
-1<0,2
∴a=-
时方程(a2-1)x2-(a+1)x+1=0无解,2
因此a=-
舍去,2
∴a=
.2
故填空答案为a=
.2