问题 解答题
设x≥y≥z≥
π
12
,且x+y+z=
π
2
,求乘积cosxsinycosz的最大值和最小值.
答案

∵x≥y≥z≥

π
12
,且x+y+z=
π
2

π
6
≤x≤
π
2
-
π
12
×2=
π
3
,y+z=
π
2
-x,

π
6
≤x≤
π
3
,y≥z,

∴cosxsin(y-z)≥0,

∴cosxsinycosz

=cosx×

1
2
[sin(y+z)+sin(y-z)]

=cosx×

1
2
[cosx+sin(y-z)]

=

1
2
cos2x+
1
2
cosxsin(y-z)≥
1
2
cos2x═
1
2
cos2
π
3
=
1
8

当y=z=

π
12
,x=
π
3
时,cosxsinycosz取得最小值,最小值为
1
8

∵sin(x-y)≥0,cosz>0,

∴cosxsinycosz

=cosz×

1
2
[sin(x+y)-sin(x-y)]

=

1
2
cos2z-
1
2
coszsin(x-y)≤
1
2
cos2z=
1+cos2z
4
=
1
4
(1+cos
π
6
)=
2+
3
8

当x=y=

12
,z=
π
12
时取得最大值,最大值为
2+
3
8

单项选择题
多项选择题