问题
解答题
设x≥y≥z≥
|
答案
∵x≥y≥z≥
,且x+y+z=π 12
,π 2
∴
≤x≤π 6
-π 2
×2=π 12
,y+z=π 3
-x,π 2
∵
≤x≤π 6
,y≥z,π 3
∴cosxsin(y-z)≥0,
∴cosxsinycosz
=cosx×
[sin(y+z)+sin(y-z)]1 2
=cosx×
[cosx+sin(y-z)]1 2
=
cos2x+1 2
cosxsin(y-z)≥1 2
cos2x═1 2
cos21 2
=π 3
,1 8
当y=z=
,x=π 12
时,cosxsinycosz取得最小值,最小值为π 3
,1 8
∵sin(x-y)≥0,cosz>0,
∴cosxsinycosz
=cosz×
[sin(x+y)-sin(x-y)]1 2
=
cos2z-1 2
coszsin(x-y)≤1 2
cos2z=1 2
=1+cos2z 4
(1+cos1 4
)=π 6
,2+ 3 8
当x=y=
,z=5π 12
时取得最大值,最大值为π 12
.2+ 3 8