问题 填空题

△ABC中,a、b、c是内角A、B、C的对边,且lgsinA,lgsinB,lgsinC成等差数列,则下列两条直线l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置关系是______.

答案

解析:由已知2lgsinB=lgsinA+lgsinC,得  lg(sinB)2=lg(sinA•sinC).

∴sin2B=sinA•sinC.  

设l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0.

a1
a2
=
sin2A
sin2B
=
sin2A
sinAsinC
=
sinA
sinC
b1
b2
=
sinA
sinC
c1
c2
=
-a
-c
=
-2RsinA
-2RsinC
=
sinA
sinC

a1
a2
=
b1
b2
=
c1
c2

∴l1与l2重合,

故答案为重合.

单项选择题
单项选择题