问题
填空题
△ABC中,a、b、c是内角A、B、C的对边,且lgsinA,lgsinB,lgsinC成等差数列,则下列两条直线l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置关系是______.
答案
解析:由已知2lgsinB=lgsinA+lgsinC,得 lg(sinB)2=lg(sinA•sinC).
∴sin2B=sinA•sinC.
设l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0.
∵
=a1 a2
=sin2A sin2B
=sin2A sinAsinC
,sinA sinC
=b1 b2
,sinA sinC
=c1 c2
=-a -c
=-2RsinA -2RsinC
,sinA sinC
∴
=a1 a2
=b1 b2
,c1 c2
∴l1与l2重合,
故答案为重合.