问题 解答题
已知x1,x2是关于x的一元二次方程kx2+4x-3=0的两个不相等的实数根.
(1)求k的取值范围;
(2)是否存在这样的实数k,使2x1+2x2-
3
x1-x2
=2成立z若存在,求k的值;若不存在,请说明理由.
答案

(1)由题意知,k≠0且△=42-4k×(-3)>0

k>-

4
3
且k≠0.

(2)存在.

∵x1+x2=-

4
k

x1•x2=-

3
k

又∵2x1+2x2-

3
x1x2
=2,

∴-

8
k
+k=2.

解得k1=4,k2=-2(不符合题意,舍去).

∴存在满足条件的k值,即k=4.

选择题
问答题