问题 解答题
已知cos(x-
π
4
)=
2
10
,x∈(
π
2
4
).
(1)求sinx的值;
(2)求sin(2x+
π
3
)的值.
答案

(1)因为x∈(

π
2
4
),

所以x-

π
4
∈(
π
4
π
2
),

sin(x-

π
4
)=
1-cos2(x-
π
4
)
=
7
2
10

sinx=sin[(x-

π
4
)+
π
4
]

=sin(x-

π
4
)cos
π
4
+cos(x-
π
4
)sin
π
4

=

7
2
10
×
2
2
+
2
10
×
2
2
=
4
5

(2)因为x∈(

π
2
4
),

故cosx=-

1-sin2x
=-
1-(
4
5
)2
=-
3
5

sin2x=2sinxcosx=-

24
25

cos2x=2cos2x-1=-

7
25

所以sin(2x+

π
3
)=sin2xcos
π
3
+cos2xsin
π
3

=-

24+7
3
50

多项选择题
单项选择题