问题
解答题
已知函数f(x)=tgx,x∈(0,
证明
|
答案
证明:tgx1+tgx2=
+sinx1 cosx1
=sinx2 cosx2 sinx1cosx2+cosx1sinx2 cosx1cosx2
=
=sin(x1+x2) cosx1cosx2 2sin(x1+x2) cos(x1+x2)+cos(x1-x2)
∵x1,x2∈(0,
),x1≠x2,π 2
∴2sin(x1+x2)>0,cosx1cosx2>0,且0<cos(x1-x2)<1,
从而有0<cos(x1+x2)+cos(x1-x2)<1+cos(x1+x2),
由此得tgx1+tgx2>=
,∴2sin(x1+x2) 1+cos(x1+x2)
(tgx1+tgx2)>tg1 2
,x1+x2 2
即
[f(x1)+f(x2)]>f(1 2
).x1+x2 2