问题
解答题
已知直线l1:(m+2)x+(m+3)y-5=0和l2:6x+2(2m-1)y=5.
问m为何值时,有(1)l1∥l2?(2)l1⊥l2?
答案
由(m+2)(2m-1)=6m+18
得m=4或m=-
;5 2
当m=4时,l1:6x+7y-5=0,l2:6x+7y=5,即l1与l2重合;
当m=-
;5 2
时,l1:-
x+1 2
y-5=0,l2:6x-6y-5=0,即l1∥l2.1 2
∴当m=-
时,l1∥l2.5 2
(2)由6(m+2)+(m+3)(2m-1)=0得m=-1或m=-
;9 2
∴当m=-1或m=-
时,l1⊥l2.9 2