问题 选择题
已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中的每一个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100),则这样的映射共有(  )
A.
C50100
B.
C5090
C.
C49100
D.
C4999
答案

本题直接考虑集合A中每一个元素在B中的象的情况非常困难.

注意到集合B中每个元素都有原象,即A中有50“组”元素分别与B中的50个元素对应;现将集合A中的100个元素按原有的顺序分成50组,每组至少一个元素;将集合B中的元素按从小到大的顺序排列为B={b1′,b2′,,b50′};

∵f(a1)≤f(a2)≤≤f(a100),

∴A中的“第1组”元素的象为b1′,“第2组”元素的象为b2′,,“第50组”元素的象为b50′,此处没有排列的问题,即只要A中元素的分组确定了,映射也就随之确定了;而A中元素的分组可视为在由这100个元素所形成的99个“空”中插上49块“挡板”,所以有

C4999
种分法,即映射共有
C4999
个.

故选D.

单项选择题
单项选择题