问题 解答题
已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:直线l恒过定点;
(2)设l与圆交于A、B两点,若|AB|=
17
,求直线l的方程.
答案

(1)证明:把直线l的方程化为(x-1)m-y+1=0,由于m的任意性,

x-1=0
-y+1=0
,解得x=1,y=1

∴直线l恒过定点(1,1).

(2)由题意知,圆心C(0,1),半径R=

5

∵l与圆交于A、B两点且|AB|=

17

∴圆心C到l得距离d=

R2-(
1
2
|AB|)
2
=
5-
17
4
=
3
2

∵直线l:mx-y+1-m=0

∴d=

|0-1+1-m|
m2+1
=
3
2
,解得m=±
3

∴所求直线l为

3
x-y+1-
3
=0,或
3
x+y-1-
3
=0.

解答题
单项选择题