问题
填空题
已知函数f(x)=2sin(2x+φ),若f(
|
答案
∵f(x)=2sin(2x+φ),f(
)=π 4
,3
∴2sin(2×
+φ)=π 4
,3
即2cosφ=3
∴f(
)=2sin(2×13π 4
+φ)13π 4
=2sin(6π+
+φ)π 2
=2sin(
+φ)π 2
=2cosφ
=
.3
故答案为:
.3
已知函数f(x)=2sin(2x+φ),若f(
|
∵f(x)=2sin(2x+φ),f(
)=π 4
,3
∴2sin(2×
+φ)=π 4
,3
即2cosφ=3
∴f(
)=2sin(2×13π 4
+φ)13π 4
=2sin(6π+
+φ)π 2
=2sin(
+φ)π 2
=2cosφ
=
.3
故答案为:
.3