问题 解答题

如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF

(1)求∠EOB的度数.

(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.

答案

解:(1) 因为CB∥OA,∠C=∠OAB=100°,

所以∠COA=180°-100°=80°,

又因为E、F在CB上,∠FOB=∠AOB,OE平分∠COF,

所以∠EOB=∠COA=×80°=40°.

(2)不变,

因为CB∥OA,

所以∠CBO=∠BOA,

又∠FOB=∠AOB,

所以∠FOB=∠OBC,而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC,

所以∠OBC:∠OFC=1:2.

(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.

理由如下:

因为 ∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°,且∠OEC=∠OBA,∠C=∠OAB=100°,

所以∠COE =∠BOA,

又因为∠FOB=∠AOB,OE平分∠COF,

所以∠BOA=∠BOF=∠FOE=∠EOC=∠COA=20°,

所以∠OEC=∠OBA=60°.

单项选择题 案例分析题
单项选择题